Словарь терминов




Всі розділи

Веб-сторінка:  1  2  3  4  5  (Наступна)
  ВСЕ

ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ

Дистрибутивный (распределительный) закон

Закон, выражающий дистрибутивность (распределительность) одной данной логической или математической операции относительно другой данной операции. Примером этого закона может служить закон обычной арифметики: а (b + с) = аb + ас, выражающий распределительность умножения относительно сложения.

Формула закона:

.

.



Закон общей инверсии(законы де Моргана)

  1. Закон двойного отрицания (двойное отрицание исключает отрицание):

    А = image_dv.gif.

Переместительный (коммутативный) закон:
  • для логического сложения: А Ú B = Ú A;

  • для логического умножения: A & B = B & A.

Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

Сочетательный (ассоциативный) закон:
  • для логического сложения: (А Ú B) Ú C = Ú (B Ú C);

  • для логического умножения: (A & B) & C = A & (B & C).

При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

Распределительный (дистрибутивный) закон:
  • для логического сложения: (А Ú B) & C = (A & C) Ú (B & C);

  • для логического умножения: (A & B) Ú C = (A Ú C) & (B Ú C).

Закон определяет правило выноса общего высказывания за скобку.

Закон общей инверсии (законы де Моргана):
  • для логического сложения:im02.gif = im03.gif &im04.gif;

  • для логического умножения: im05.gif=  im03.gif Ú im04.gif

Закон идемпотентности (от латинских слов idem — тот же самый и potens — сильный; дословно — равносильный):
  • для логического сложения: А Ú A = A;

  • для логического умножения: A & A = A .

Закон означает отсутствие показателей степени.

Законы исключения констант:
  • для логического сложения: А Ú 1 = 1А Ú 0 = A;

  • для логического умножения: A & 1 = A, A & 0 = 0.

Закон противоречия:
  • A & im03.gif = 0.

Невозможно, чтобы противоречащие высказывания были одновременно истинными.

Закон исключения третьего:
  • Ú im03.gif = 1.

Из двух противоречащих высказываний об одном и том же предмете одно всегда истинно, а второе — ложно, третьего не дано.

Закон поглощения:
  • для логического сложения: А Ú (A & B) = A;

  • для логического умножения: A & (A Ú B) = A.

Знание законов логики позволяет проверять правильность рассуждений и доказательств. Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), другие - основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Нарушения законов логики приводят к логическим ошибкам и вытекающим из них противоречиям.

Упрощение формул.

Пример 1. Упростить формулу (А Ú В) & (А Ú С).

Решение:

Раскроем скобки: (А Ú В) & (А Ú С) = A & A Ú A & C Ú B & A Ú B & C;

По закону идемпотентности A & A =A, следовательно, 
A & A Ú A & C Ú B & A Ú B & C = A Ú A & C Ú B & A Ú B & C;

В высказываниях А и А & C вынесем за скобки А и используя свойство А + 1= 1, получим 
Ú A & C Ú B & A Ú B & C = A & (1 Ú C) Ú B & A Ú B & C = A Ú B & A Ú B & C;

Аналогично предыдущему пункту вынесем за скобки высказывание А
Ú B & A Ú B & C = A & (1 Ú B) Ú B & C = A Ú B & C.

Таким образом, мы доказали закон дистрибутивности.

Всякую формулу можно преобразовать так, что в ней не будет отрицаний сложных высказываний - все отрицания будут применяться только к простым высказываниям.

Пример 2. Упростить выражения fim01.gif так, чтобы в полученных формулах не содержалось отрицания сложных высказываний.

Решение: 
fim04.gif 


ИСПОЛНИТЕЛЬ АЛГОРИТМОВ

Алгоритм

Заранее заданное понятное и точное пpедписание возможному исполнителю совеpшить определенную последовательность действий для получения решения задачи за конечное число шагов. (порядок действий, понятных исполнителю, и приводящих к конкретному результату.)

Алгоритм

набор инструкций,(Понятных исполнителю) описывающих порядок действий исполнителя для достижения некоторого результата.

ИСТОРИЧЕСКИЕ ЛИЧНОСТИ

А.А Марков

В конструктивную математическую логику А. А. Марков вводит понятие «разрешимое высказывание» и связанное с ним понятие «прямое отрицание». В логике А. А. Маркова имеется и другой вид отрицания — усиленное отрицание, относящееся к так называемым полуразрешимым высказываниям.

Кроме материальной и усиленной импликации, при установ­лении истинности которых приходится заботиться об истинности посылки и заключения, А. А. Марков вводит дедуктивную имп­ликацию, определяемую по другому принципу. Дедуктивная имп­ликация «если А, то В»выражает возможность выведения В из А по фиксированным правилам, каждое из которых в применении к верным формулам даст верные формулы. Всякое высказывание, выводимое из истинного высказывания, будет истинным.

Через дедуктивную импликацию А. А. Марков определяет редукционное отрицание (reductio ad absurdum). Редукционное отрицание высказывания А (сформулированного на данном язы­ке) понимается как дедуктивная импликация «если А, то Л», где через Л обозначен абсурд. Это определение отрицания соответ­ствует обычной практике рассуждений математика: математик отрицает ту посылку, из которой вытекает абсурд. Для установ­ления истинности редукционного отрицания высказывания не требуется вникать в смысл этого высказывания. Высказывание, для которого установлена истинность редукционного отрицания, не может быть истинным.

hello_html_m3e129a77.jpg


Аристо́тель

Аристо́тель (др.-греч. Ἀριστοτέλης384 до н. э.СтагираФракия — 322 до н. э.Халкида, остров Эвбея) — древнегреческий философ. Ученик Платона. С 343 до н. э. — воспитатель Александра Македонского[1]. В 335/4 г. до н. э.[2] основал Ликей (др.-греч.Λύκειον Лицей, или перипатетическую школу). Натуралист классического периода. Наиболее влиятельный из философов древности; основоположник формальной логики. Создал понятийный аппарат, который до сих пор пронизывает философский лексикон и стиль научного мышления.

Аристотель был первым мыслителем, создавшим всестороннюю систему философии, охватившую все сферы человеческого развития: социологиюфилософиюполитикулогикуфизику. Его взгляды на онтологию имели серьёзное влияние на последующее развитие человеческой мысли. Метафизическое учение Аристотеля было принято Фомой Аквинским и развито схоластическим методом. Карл Маркс называл Аристотеля величайшим мыслителем древности[3].

Aristotle Altemps Inv8575.jpg


Го́тфрид Ви́льгельм Ле́йбниц

Го́тфрид Ви́льгельм Ле́йбниц 

саксонский философлогик,математикмеханикфизикюристисторикдипломатизобретатель и языковедОснователь и первый президент Берлинской Академии наук, иностранный член Французской Академии наук[13].

Важнейшие научные достижения:

Лейбниц также является завершителем философии XVII века и предшественником немецкой классической философии, создателем философской системы, получившей название монадология[16]. Он развил учение об анализе и синтезе[5][17], впервые сформулировал закон достаточного основания (которому, однако, придавал не только логический (относящийся к мышлению), но и онтологический (относящийся к бытию) смысл: «… ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым, — без достаточного основания, почему именно дело обстоит так, а не иначе…»)[16][18]; Лейбниц является также автором современной формулировки закона тождества[5][8][17]; он ввёл 

термин «модель»[5], писал о возможности машинного моделирования функций человеческого мозга[19]. Лейбниц высказал идею о превращении одних видов энергии в другие[5], сформулировал один из важнейших вариационных принципов физики — «принцип наименьшего действия» — и сделал ряд открытий в специальных разделах физики[5][8].

Он первым обратился к вопросу о возникновении российской правящей династии[20], первым в немецкой историографии обратил внимание на взаимосвязь лингвистических проблем с генеалогией[20], создал теорию исторического происхождения языков и дал их генеалогическую классификацию, явился одним из создателей немецкого философского и научного лексикона[5][8].

Лейбниц также ввёл идею целостности органических систем, принцип несводимости органического к механическому и высказал мысль об эволюции Земли[5].

Gottfried Wilhelm von Leibniz.jpg

Давид Гильберт

Дави́д Ги́льберт (нем. David Hilbert23 янв

аря 1862 — 14 февраля 1943) — немецкий математик-универсал, внёс значительный вклад в развитие многих областей математики. В 1910—1920-е годы (после смерти Анри Пуанкаре) был признанным мировым лидером математиков. Гильберт разработал широкий спектр фундаментальных идей во многих областях математики, в том числе теорию инвариантов и аксиоматику евклидовой геометрии. Он сформулировал теорию гильбертовых пространств, одну из основ современного функционального анализа[4].


Джордж Буль

Английский математик и логик. Профессор математики Королевского колледжа Корка с 1849 года. Один из основателей математической логики. Буль был, вероятно, первым после Джона Валлиса математиком, обратившимся к логической проблематике. Буль не считал логику разделом математики, но находил глубокую аналогию между символическим методом алгебры и символическим методом представления логических форм и силлогизмов.На математические темы Булем в течение жизни были созданы два систематических трактата: «Трактат о дифференциальных уравнениях» (1859; второе издание не завершено, материалы к нему опубликованы посмертно в 1865) и задуманный как его продолжение «Трактат о конечных разностях» (1860). Эти труды внесли важный вклад в соответствующие разделы математики и в то же время продемонстрировали глубокое понимание Булем философии своего предмета.

George Boole.jpg

КЛАССИФИКАЦИЯ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ

Визуальное программирование

Визуальное программирование — способ создания программы для ЭВМ путём манипулирования графическими объектами вместо написания её текста.


Веб-сторінка:  1  2  3  4  5  (Наступна)
  ВСЕ