Термины по теме «Элементы алгебры логики»


Цель 

Научиться давать определения терминов по теме "Элементы алгебры логики"

Задание

Дать 3 определения терминов по теме "Элементы алгебры логики"(смотреть здесь). Термины должны быть из разных категорий (Основные понятия, Логические операции, Законы алгебры логики, Исторические личности - всего по каким-либо 3 категориям). Для каждого определения выбирать категорию. На один и тот же термин можно давать разные (не повторяющиеся) определения. К определениям добавлять изображения или прикреплять файлы.

Оценивание

Каждое полное определение - 4 балла



Sie können das Glossar über das Suchfeld und das Stichwortalphabet durchsuchen.

@ | A | Ä | B | C | D | E | F | G | H | I | J | K | L | M | N | O | Ö | P | Q | R | S | T | U | Ü | V | W | X | Y | Z | Alle

А

Nutzerbild Синишин Богдан

А.А Марков

von Синишин Богдан - Monday, 31. October 2016, 19:51
 

В конструктивную математическую логику А. А. Марков вводит понятие «разрешимое высказывание» и связанное с ним понятие «прямое отрицание». В логике А. А. Маркова имеется и другой вид отрицания — усиленное отрицание, относящееся к так называемым полуразрешимым высказываниям.

Кроме материальной и усиленной импликации, при установ­лении истинности которых приходится заботиться об истинности посылки и заключения, А. А. Марков вводит дедуктивную имп­ликацию, определяемую по другому принципу. Дедуктивная имп­ликация «если А, то В»выражает возможность выведения В из А по фиксированным правилам, каждое из которых в применении к верным формулам даст верные формулы. Всякое высказывание, выводимое из истинного высказывания, будет истинным.

Через дедуктивную импликацию А. А. Марков определяет редукционное отрицание (reductio ad absurdum). Редукционное отрицание высказывания А (сформулированного на данном язы­ке) понимается как дедуктивная импликация «если А, то Л», где через Л обозначен абсурд. Это определение отрицания соответ­ствует обычной практике рассуждений математика: математик отрицает ту посылку, из которой вытекает абсурд. Для установ­ления истинности редукционного отрицания высказывания не требуется вникать в смысл этого высказывания. Высказывание, для которого установлена истинность редукционного отрицания, не может быть истинным.

hello_html_m3e129a77.jpg


 
Nutzerbild Суханов Саня

Аристо́тель

von Суханов Саня - Friday, 28. October 2016, 14:09
 

Аристо́тель (др.-греч. Ἀριστοτέλης384 до н. э.СтагираФракия — 322 до н. э.Халкида, остров Эвбея) — древнегреческий философ. Ученик Платона. С 343 до н. э. — воспитатель Александра Македонского[1]. В 335/4 г. до н. э.[2] основал Ликей (др.-греч.Λύκειον Лицей, или перипатетическую школу). Натуралист классического периода. Наиболее влиятельный из философов древности; основоположник формальной логики. Создал понятийный аппарат, который до сих пор пронизывает философский лексикон и стиль научного мышления.

Аристотель был первым мыслителем, создавшим всестороннюю систему философии, охватившую все сферы человеческого развития: социологиюфилософиюполитикулогикуфизику. Его взгляды на онтологию имели серьёзное влияние на последующее развитие человеческой мысли. Метафизическое учение Аристотеля было принято Фомой Аквинским и развито схоластическим методом. Карл Маркс называл Аристотеля величайшим мыслителем древности[3].

Aristotle Altemps Inv8575.jpg