Липиды.

<u>Липиды</u> — жиры и жироподобные вещества, являющиеся производными высших жирных кислот, высших жирных спиртов или высших жирных альдегидов. Как правило, это низкомолекулярные жирорастворимые органические вещества, которые извлекаются из клеток животных, растений и микроорганизмов неполярными растворителями.

Основные биологические функции липидов:

главные компоненты биологических мембран;

запасной, изолирующий и защищающий органы материал;

наиболее калорийная часть пищи;

важная составная часть диеты человека и животных;

транспорт некоторых витаминов внутри организма;

регуляторы транспорта воды и солей;

иммуномодуляторы; регуляторы активности некоторых ферментов;

эндогормоны;

передатчики биологических сигналов.

Основные источники липидов: молоко, растительные масла (оливковое, подсолнечное, льняное, кукурузное, кокосовое и т.д.), свиное сало и другие животные жиры, яйца, мозг и внутренности животных и др.

А.М. Чибиряев "Биологически активные соединения живых организмов", 2009

Липиды.

В состав липидов, помимо жирных кислот, спиртов и альдегидов, могут входить азотистые основания, фосфорная кислота, углеводы, аминокислоты, белки и т.п.

Подразделяются на <u>простые</u> и <u>сложные</u>. К <u>простым</u> относятся липиды, молекулы которых содержат только остатки жирных кислот (или альдегидов в енольной форме) и спиртов. Из простых липидов в растениях и животных встречаются жиры и жирные масла, представляющие собой <u>триацилглицерины</u> (триглицериды) и <u>воски</u>.

Воски состоят из сложных эфиров высших жирных кислот и одно- или двухатомных высших спиртов.

К жирам близки <u>простагландины</u>, образующиеся в организме из полиненасыщенных жирных кислот (в первую очередь - арахидоновой). По химической природе это производные простаноевой кислоты со скелетом из 20 атомов углерода и содержащие циклопентановое кольцо.

Сложные липиды делят на три большие группы: фосфолипиды (соединения, имеющие в своей структуре остаток фосфорной кислоты), гликолипиды (соединения, имеющие в своей структуре углеводный компонент) и сфинголипиды. Иногда сложные липиды дополнительно подразделяют на нейтральные, полярные и оксилипины.

Составные части липидов - жирные кислоты

Известно более 800 жирных кислот, отличающихся по длине углеродной цепи, по степени и характеру её разветвления, числу и положению C=C связей, по природе и количеству других функциональных групп (СООН, ОН, SH, NH₂ и др.).

Насыщенные жирные кислоты $C_{14}H_{28}O_2$ $C_{14:0}$ миристиновая кислота $C_{16}H_{32}O_2$ $C_{16:0}$ пальмитиновая кислота $C_{18}H_{36}O_2$ C_{18:0} стеариновая кислота $C_{20}H_{40}O_2$ арахиновая кислота

Составные части липидов - жирные кислоты

В составе липидов бактериальных клеток часто встречаются разветвленные жирные кислоты, с циклопропановым фрагментом или с ОН-группой.

 $C_{19}H_{38}O_2$

туберкулостеариновая кислота

Ненасыщенные жирные кислоты

ш	миристолеиновая кислота	C ₁₄ H ₂₆ O ₂	C _{14:1}
O HO HO	пальмитолеиновая кислота	C ₁₆ H ₃₀ O ₂	C _{16:1}
HO HO	олеиновая кислота	C ₁₈ H ₃₄ O ₂	C _{18:1}
HO	эруковая кислота	C ₂₂ H ₄₂ O ₂	C _{22:1}
(от 42 д	о 55% в масле рапса и горчицы)		

чин помриев виологически активные сосдинения живых организмов

Составные части липидов - жирные кислоты

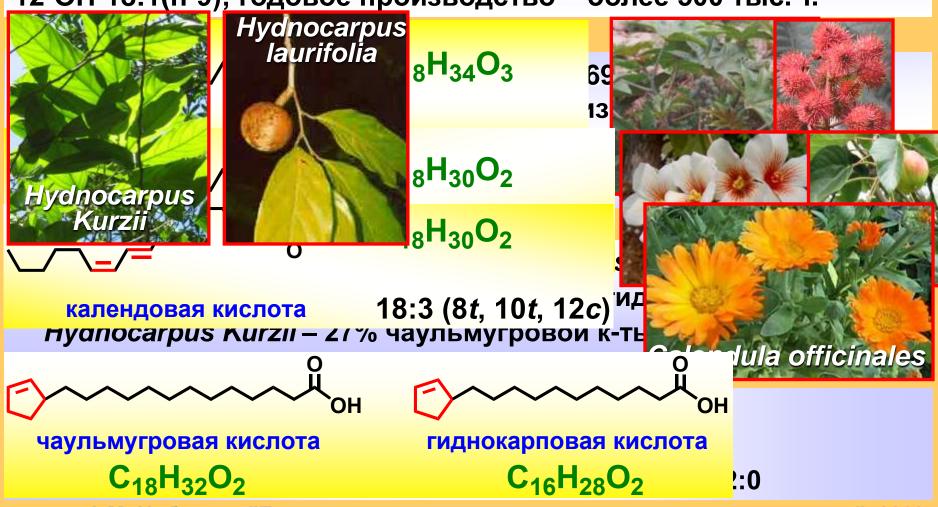
Олеиновая и линолевая кислоты составляют около 60% всех ЖК растительных масел.

Состав жирных кислот некоторых растительных жиров и масел

Жирная кислота	Кокосовый орех	Арахис	Оливки	Масличная пальма (мяк.)	Рапс обычный	Рапс селекционный	Соевые бобы	Подсолнечник обычный	Подсолнечник селекц.	Семена льна
<12:0	21.5									
12:0	48.8			1.2				Ĭ		
14:0	14.8			10				0.2	0.1	
16:0	6.9	12.5	10.3	45.0	3	4	11	6.0	3.6	6.1
18:0	2.0	2.5	2.3	4.5	1	2	3.5	5.6	4.9	3.2
18:1n-9	4.5	37.9	78.1	37.5	16	56	22	17.8	80.6	16.6
18:2n-6	1.4	41.1	7.3	10.5	14	26	53	68.7	8.4	14.2
18:3n-3		8.3	0.6	0.4	10	10	7.5	0.2	0.1	59.8
20:1n-9			0.3		6	2	1.0	0.1	0.3	
22:1n-9					49	следы				

А.М. Чибиряев "Биологически активные соединения живых организмов", 2009

Состав жирных кислот некоторых животных жиров и масел

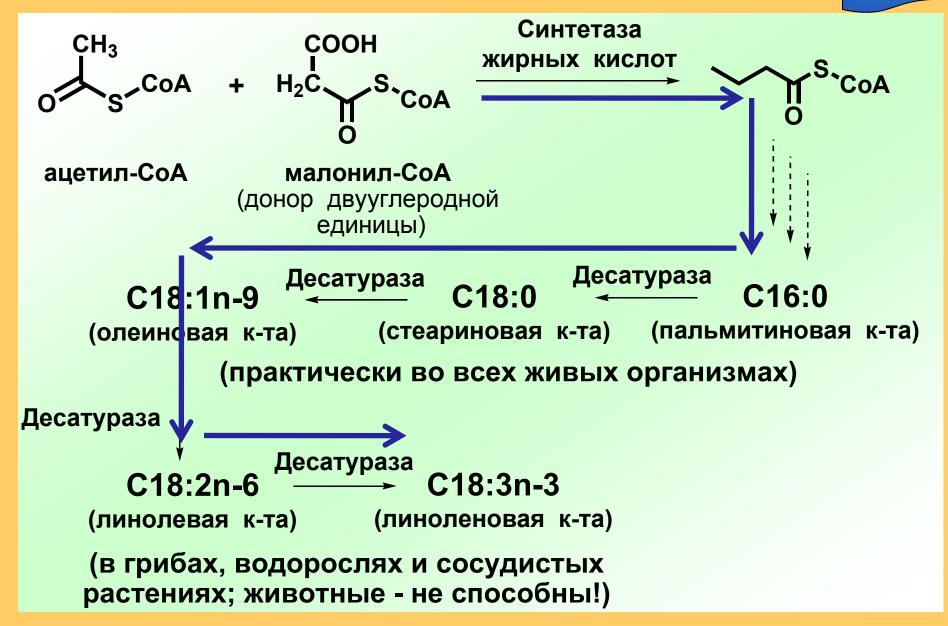

_	Сливочное			-	Жир тихоокеанской	Жир	Жир тихоокеанского
кислота	масло	жир	жир	жир	сельди	трески	анчоуса
<12:0	10.1						
12:0	2.8			0.6	02		
14:0	10.1	2.0	2.5	5.6	6.8	3.3	8.3
16:0	25.0	27.1	27.0	27.0	22.7	13.4	19.5
16:1	1.5	4.0	10.0	1.6	8.0	9.6	9.1
18:0	12.1	11.0	7.4	31.7	2.7	2.7	3.2
18:1n-7) (5.0		2.5
18:1n-9	27.1	44.4	47.5	31.7	29.7	23.4	12.9
18:2n-6	7:	11.4	1.7	1.6	0.7	1.4	0.9
18:3n-3	2.0)	1.1	0.2	0.2	0.6	0.4
20:1n-9					4.4	7.8	1.2
20:1n-11					1.0		0.1
20:4n-6						1.4	0.5
20:5n-3					5.3	11.5	18.2
22:1n-11					3.9	5.3	1.4
22:5n-3					0.2	1.6	1.2
22:6n-3					1.5	12.5	10.9

Мировое производство важнейших жиров и масел.

Жиргі и маспа	Миллионы тонн (% всего)							
Жиры и масла	1965	1975	1985	1995	2005			
Соевое	4.1 (13.0)	8.5 (19.7)	14.1 (22.1)	19.5 (22.1)	27.3 (23.8)			
Пальмовое	1.4 (4.4)	2.8 (6.5)	6.7 (10.5)	13.9 (15.7)	21.4 (18.7)			
Рапсовое	1 4 (4.4)	2.6 (6.1)	6.0 (9.4)	9.5 (10.7)	12.0 (10.5)			
Подсолнечное	2.9 (9.2)	3.7 (8.6)	6.5 (10.2)	8.9 (10.0)	10.8 (9.4)			
Хлопковое	2.6 (8.3)	2.9 (6.8)	3.4 (5.3)	4.4 (5.0)	5.2 (4.5)			
Арахисовое	3.0 (9.5)	2.9 (6.8)	3.3 (5.2)	4.2 (4.7)	5.1 (4.4)			
Кокосовое	2.0 (6.3)	2.6 (6.1)	2.7 (4.2)	3.2 (3.6)	3.5 (3.1)			
Пальмитоядерное	0.4 (1.3)	0.5 (1.2)	0.9 (1.4)	1.7 (1.9)	2.7 (2.4)			
Кукурозное	0.4 (1.3)	0.6 (1.4)	1.0 (1.6)	1.6 (1.8)	2.0 (1.7)			
Всего по группе	18.2 (57.7)	27.1 (63.2)	44.6 (69.9)	66.9 (75.5)	90.0 (78.5)			
Сливочное	4.6 (14.6)	5.3 (12.4)	6.3 (9.9)	6.7 (7.6)	7.3 (6.4)			
Технический жир	4.3 (13.7)	5.5 (12.8)	6.1 (10.0)	7.3 (8.2)	8.1 (7.1)			
Свиной	3.5 (11.1)	4.0 (9.3)	5.0 (7.8)	6.2 (7.0)	7.5 (6.6)			
Рыбий	0.9 (2.9)	1.0 (2.3)	1.5 (2.4)	1.5 (1.7)	1.6 (1.4)			
Всего по группе	13.3 (42.3)	15.8 (36.8)	19.2 (30.1)	21.7 (24.5)	24.5 (31.5)			
ВСЕГО	31.5	42.9	63.8	88.6	114.5			
А.М. ЧИОИРЯСЬ В	NOTIOI NIMECK	м активпыс	соединени	O VIDDIN KI	ргапизиюв	, 2		

Масло растений с необычным составом жирных кислот.

Касторовое масло из клещевины – 90% рицинолевой кислоты 12-OH-18:1(n-9); годовое производство – более 500 тыс. т.


Масло растений с необычным составом жирных кислот.

произведено 35 тыс. т.

Масла с высоким содержанием стеариновой кислоты (18:0):

```
масло какао из шоколадного дерева (Theobroma cacao) – 34.4% (+ 34.8% олеиновой кислоты); масло салового дерева (Shorea robusta) – 44.3% (+ 40.4% олеиновой кислоты); в 1975 году было произведено 35 тыс. т.; масло масляного дерева карите (Butyrospermum parkii) – 44.3% (+ 45.6% олеиновой кислоты); в 1979 году было
```

Биосинтез жирных кислот

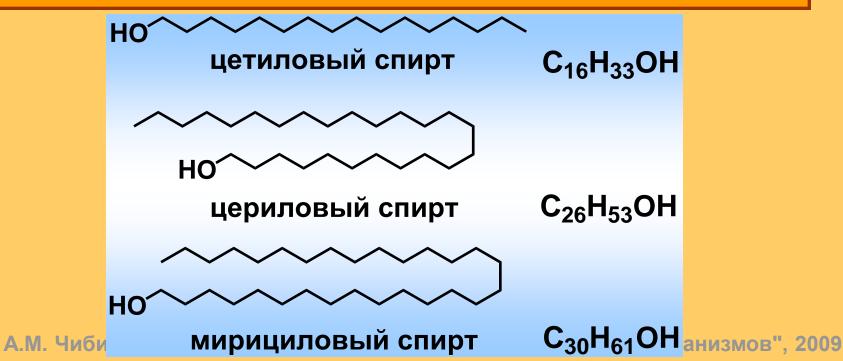
Биосинтез жирных кислот

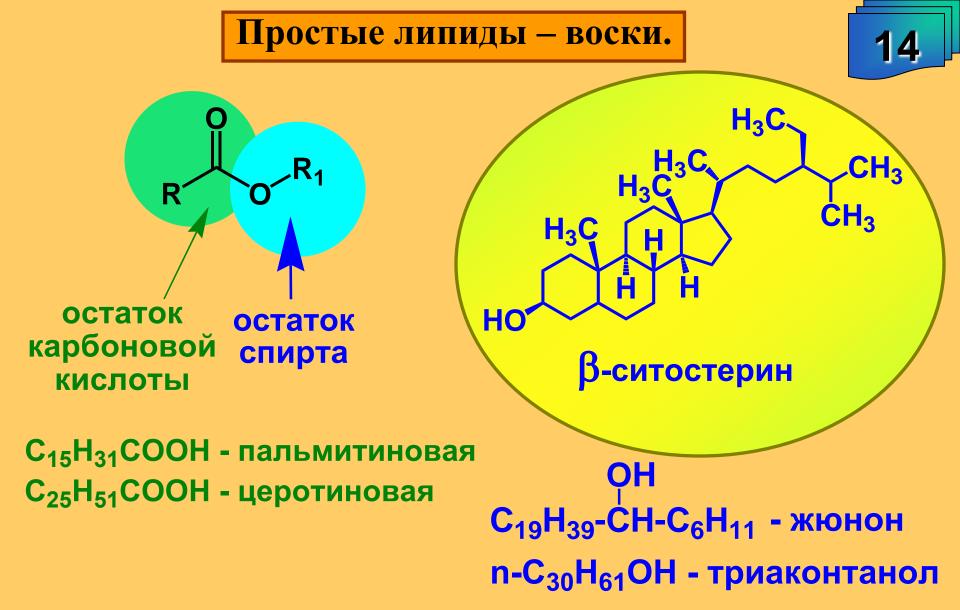
Линолевая и линоленовая кислоты не синтезируются в организмах высших животных, но необходимы для нормального жирового обмена => являются незаменимыми кислотами.

Биосинтез полиеновых кислот.

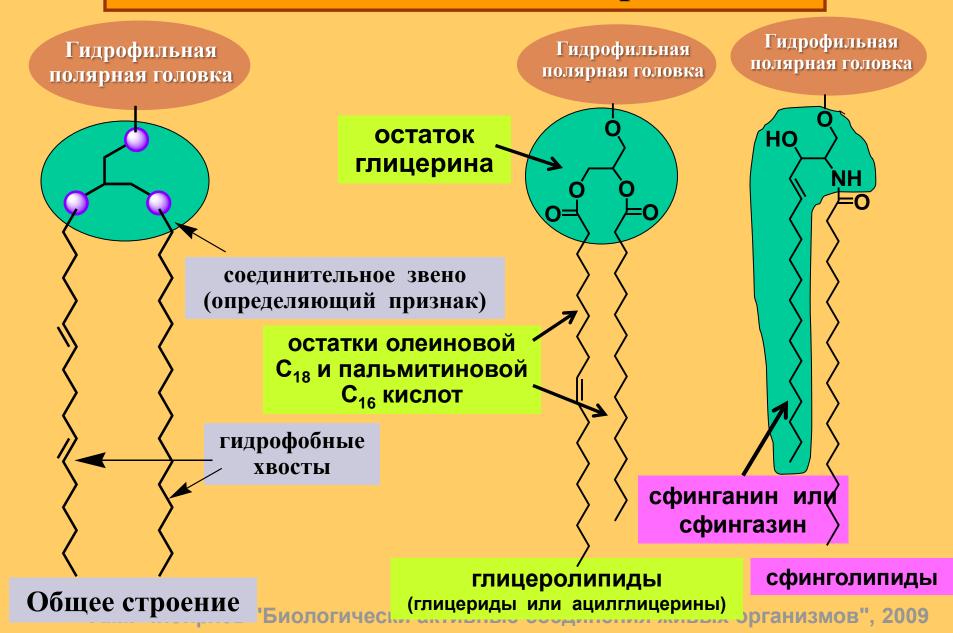
К-ты линолевого ряда

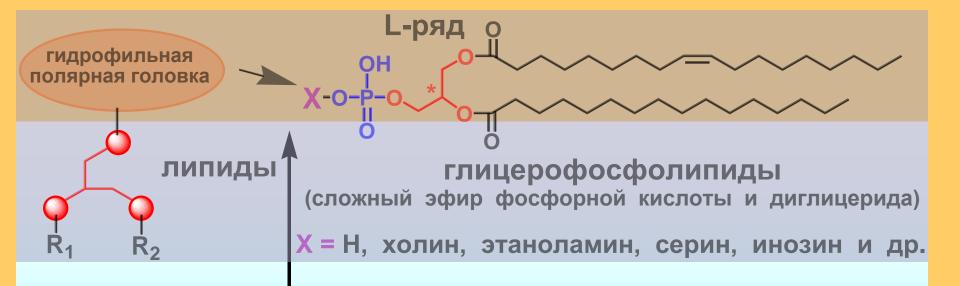
 $18:2n-6 \rightarrow 18:3n-6 \rightarrow 20:3n-6 \rightarrow 20:4n-6 \rightarrow 22:4n-6 \rightarrow 22:5n-6$


К-ты линоленового ряда


 $18:3n-3 \rightarrow 18:4n-3 \rightarrow 20:4n-3 \rightarrow 20:5n-3 \rightarrow 22:5n-3 \rightarrow 22:6n-3$

(практически во всех живых организмах, кроме животных-хищников и цветковых растений!)


Составные простых липидов – жирные спирты.



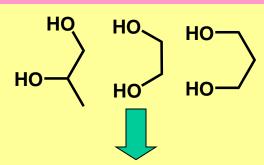
Первичная классификация липидов биологических мембран

15

Фосфолипиды — главные компоненты биологических мембран

X = H - фосфатидовая кислота

(1-5% от общего количества фосфолипидов; найдена в тканях животных, растений и микроорганизмов; предшественник всех других глицерофосфолипидов)


Составные части липидов биологических мембран

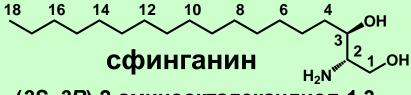
глицеролипиды

более 50% от встречающихся в природе

ЖК + глицерин (или другие полиолы)

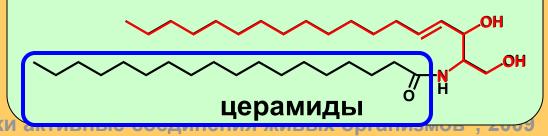
диольные липиды

$$R_{2}O \xrightarrow{2} C \xrightarrow{C} H = R_{2}O \xrightarrow{C} C \xrightarrow{C} H$$


$$3 CH_{2}OR_{3} COR_{3}$$

Проекция Фишера глицеридов

сфинголипиды


Строительный материал нервных тканей и мозга

жирные кислоты + сфингозиновые основания

(2S, 3R)-2-аминооктадекандиол-1,3

(2S, 3R, 4E)-2-аминооктадецен-4-диол-1,3

Диацильные глицерофосфолипиды

(обязательный компонент большинства мембран животных, растительных и бактериальных клеток)

Алкилацильные глицерофосфолипиды

плазманил

(часто встречается в тканях животных организмов морей и океанов)

Тромбоцитактивирующий фактор

(в концентрациях <1 наномоль изменяет морфологию тромбоцитов, вызывает их агрегацию и приводит к высвобождению 5-гидрокситриптамина; участвует в развитии ряда острых аллергических и воспалительных реакций у животных и человека)

Плазмалогены

плазменил

(до 22% от общего количества фосфолипидов; в организме человека - нервные ткани, головной мозг, сердечная мышца, надпочечники, сперма)

$$H_3C$$
 H_3C
 H_3C
 O
 O
 R_1
 R_2

 R_1 CO, R_2 CO - преимущественно C_{16} - и C_{18} -кислоты, причем R_1 - насыщенные, а R_2 - ненасыщенные.

Фосфатидилхолины

До 50% от общего количества фосфолипидов в тканях высших растений и животных. В бактериальных клетках практически отсутствует.

Основной компонент в бактериальных клетках. В тканях высших растений и животных - 15-30% от общего количества фосфолипидов.

Фосфатидилэтаноламины

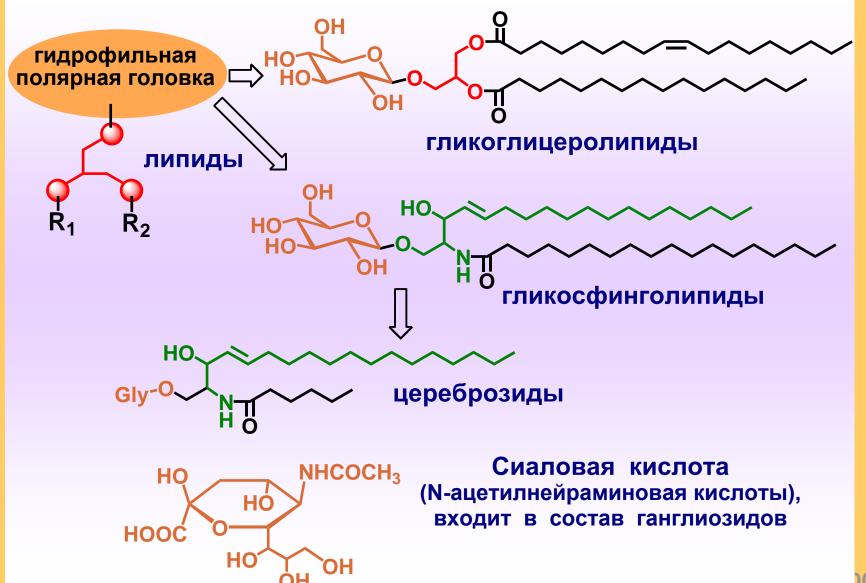
В бактериальных клетках фосфатидилэтаноламины преимущественно имеют остатки насыщенных и разветвленных жирных кислот.

Поэтому их мембраны более устойчивы к внешнему воздействию.

$$H_2N$$
 OH
 OH
 R_1
 R_2
 R_2

До 10-15% от общего количества фосфолипидов в тканях млекопитающихся. Локализация: мозг, сердце, печень, почки, селезёнка, лёгкие.

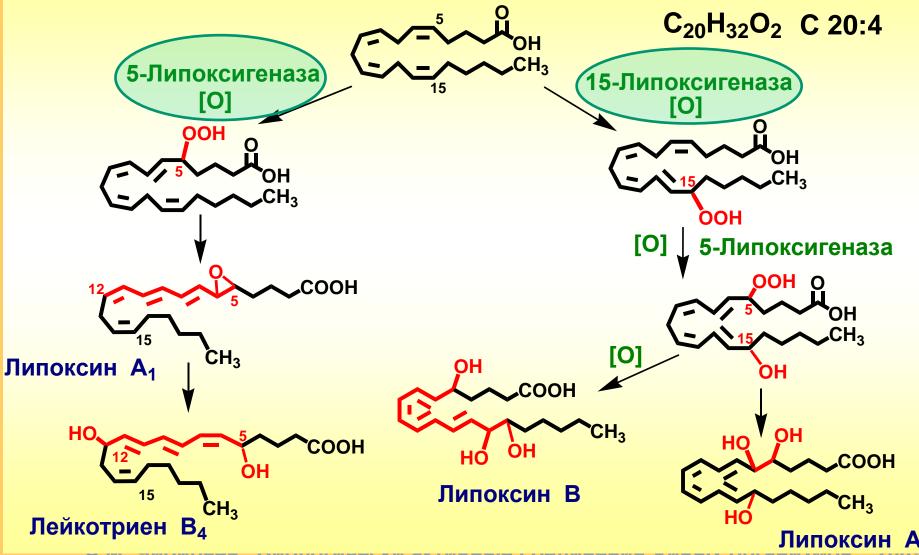
Фосфатидилсерины


Выступает регулятором активности ряда мембраносвязанных ферментов; является предшественником при биосинтезе фосфатидилэтаноламинов.

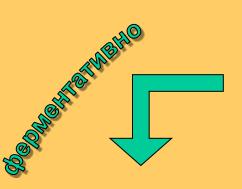
Сфингофосфолипиды.

(сложный эфир фосфорной кислоты и сфингозинового основания)

 $X = -CH_2CH_2N(CH_3)_3$ - сфингомиелин


Гликолипиды.

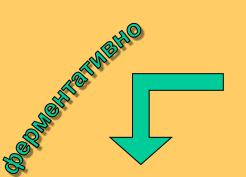
Каскад арахидоновой к-ты


арахидоновая кислота

Цис, цис, цис, цис - Эйкоза-5,8,11,14-тетраеновая кислота

Каскад арахидоновой к-ты

Простагландины


Простаноиды

α-линоленовая к-та С18:3 арахидоновая к-та С20:4 эйкозапентаеновая к-та С20:5

докозагексаеновая к-та С22:6

$$HO$$
 — $(CH_2)_3CO_2H$ — $(CH_2)_3CO_2H$ — C_5H_{11} — OH —

Объект - животные

Простаноиды

α-линоленовая к-та С18:3 арахидоновая к-та С20:4 эйкозапентаеновая к-та С20:5

докозагексаеновая к-та С22:6

растения

О ОАС ОАС ОАС
$$(CH_2)_2CO_2Me$$
 СІ ACO $(CH_2)_3CO_2Me$ C_5H_{11} КЛАВУЛОН ПУНАГЛАНДИН

морские организмы

Препараты простагландинов.

Латанопрост (Ксалатан) – антиглаукомное средство (на основе синтетического простагландина группы $F_{2\alpha}$).

HO OH

Алпростадил – для лечения эректильной дисфункции (на основе синтетического простагландина группы E_1).

Мизопростол и Энпростил – противоязвенные средства (на основе синтетических простагландинов группы E₁).

Динопрост (PGF_{2α}) и Динопростон (PGE₂) – в акушерской практике для стимулирования родовой деятельности в любой период беременности