Алгоритмы решения задач

Вычисление теплового эффекта реакции по известному термохимическому уравнению.

Задача. По термохимическому уравнению

$$N_2(\Gamma_1) + O_2(\Gamma_2) = 2NO(\Gamma_2) - 180,7$$
 кДж

вычислите, сколько поглотится теплоты при вступлении в реакцию 5,6 л азота (н. у.).

Последовательность действий	Выполнение действий
1. Над термохимическим уравнением в соответствующих местах указать известный объем азота и неизвестное количество энергии	$N_2 (\Gamma) + O_2 (\Gamma) = V_2 = 22.4 \text{ д/мость}$ $N_2 (\Gamma) - 180.7 \text{ кДж}$
2. Составить пропорцию	5,6/22,4 = Q/180,7
3. Решив уравнение, найти искомое количество энергии (тепловой эффект)	Q = 45,2 кДж

Составление термохимического уравнения.

Задача. При сжигании 3 г магния выделилось 75,15 кДж теплоты. Составьте термохимическое уравнение реакции горения магния.

Последовательность действий	Выполнение действий
1. Записать термохимическое уравнение в общем виде	$2Mg + O_2 = 2MgO + Q$
 Над уравнением указать данные задачи 	${}^{3}r_{2}Mg + O_{2} = 2MgO + {}^{75,15} \text{ kHz}$
3. Под формулой вещества, участвующего в расчете, подписать соответствующие величины (если дана масса — ν , M , m , если дан объем — ν , $V_{\rm M}$, V)	$^{3\mathrm{r}}_{2\mathrm{Mg}} + \mathrm{O}_{2} = 2\mathrm{MgO} + \overset{75,15\mathrm{кДж}}{Q}$ $^{2\mathrm{sorts}}_{2\mathrm{2MgOrr}}$ $^{M=24\mathrm{r/sorts}}_{\alpha\mathrm{m}\mathrm{m}\mathrm{s}} = 48\mathrm{r}$
4. Составить пропорцию и найти тепловой эффект реакции	3/48 = 75,15/Q, Q = 1202 кДж
5. Составить термохимическое уравнение, которое и является ответом задачи	Термохимическое уравнение: $2\text{Mg} + \text{O}_2 = 2\text{MgO} + 1202 \text{ кДж}$

Вычисление теплоты сгорания вещества.

Задача. По термохимическому уравнению реакции

$$2CO(\Gamma_{-}) + O_2(\Gamma_{-}) = 2CO_2(\Gamma_{-}) + 566,5 кДж$$

вычислите теплоту сгорания оксида углерода(II).

Последовательность действий	Выполнение действий
1. В термохимическом уравнении под формулой оксида углерода(II) подписать количество вещества	$2\text{CO}_{v=2\text{ милт}}(r_{v}) + \text{O}_{2}(r_{v}) =$ $2\text{CO}_{2}(r_{v}) + 566,5 \text{ кДж}$
2. Определить теплоту сгорания оксида углерода(II) по пропорции	1/2 = Q/566,5, Q = 283,25 кДж/моль

Вычисление теплоты образования вещества.

Задача. При сжигании 93 г белого фосфора выделилось 2322 кДж теплоты. Рассчитайте теплоту образования оксида фосфора(V).

Последовательность действий	Выполнение действий
1. Записать термохимическое уравнение реакции горения фосфора	$4P + 5O_2 = 2P_2O_5 + Q$
2. Переписать уравнение с учетом образования 1 моль вещества и над уравнением указать данные задачи	${}_{2}^{93}$ г ${}_{2}^{P} + 5/2$ О $_{2} = {}_{2}^{Q}$ О $_{5} + {}_{Q}^{2322}$ кДж
3. Под символом фосфора подписать значения необходимых величин	$^{93 \text{ r}}_{2P+5/2O_2} = P_{_2O_5} + ^{2322 \text{ кДж}}_{Q}$ $^{\nu=2 \text{ моги.}}_{M=31 \text{ г/мели.}}$ $^{\kappa=62 \text{ r}}$
4. Составить пропорцию и найти теплоту образования оксида фосфора(V)	93/62 = 2322/Q, Q = 1548 кДж/моль

Вычисление теплового эффекта реакции по закону Гесса.

Задача. Вычислите тепловой эффект реакции

$$Fe_2O_3 + 2A1 \rightarrow Al_2O_3 + 2Fe$$
,

если теплота образования оксида железа(III) составляет +821,5 кДж/моль, а теплота образования оксида алюминия +1675,7 кДж/моль (теплота образования простого вещества равна нулю).

Последовательность действий	Выполнение действий
1. Написать формулу вычисления теплового эффекта реакции по закону Гесса	$Q = \Sigma Q_{\text{off, npog}} - \Sigma Q_{\text{off, mex.n-a}}$
2. Записать то же для конкретной реакции	$Q = Q_{\text{obp}}(\text{Al}_2\text{O}_3) - Q_{\text{obp}}(\text{Fe}_2\text{O}_3)$
3. Подставить в формулу данные задачи и вычислить тепловой эффект реакции	Q = 1675,7 - 821,5 = 854,2 кДж/моль
4. Записать ответ	Q = 854,2 кДж/моль